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ABSTRACT  The nematode Caenorhabditis elegans is a useful model to study 
aging due to its short lifespan, ease of manipulation, and available genetic 
tools. Several molecules and extracts derived from plants and fungi extend 
the lifespan of C. elegans by modulating aging-related pathways that are con-
served in more complex organisms. Modulation of aging pathways leads to 
activation of autophagy, mitochondrial biogenesis and expression of antioxi-
dant and detoxifying enzymes in a manner similar to caloric restriction. Low 
and moderate concentrations of plant and fungal molecules usually extend 
lifespan, while high concentrations are detrimental, consistent with a 
lifespan-modulating mechanism involving hormesis. We review here mole-
cules and extracts derived from plants and fungi that extend the lifespan of C. 
elegans, and explore the possibility that these natural substances may pro-
duce health benefits in humans. 
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INTERVENTIONS TO DELAY AGING 
Aging can be modulated by genes and lifestyle. For in-
stance, specific gene variants of insulin-like growth factor-1 
(IGF-1) receptor and forkhead box O3A (FOXO3A) are asso-
ciated with longer lifespan in centenarians [1]. In terms of 
lifestyle, one of the most studied interventions that delay 
aging is caloric restriction (CR), which can increase lifespan 
in organisms ranging from yeasts to primates [2]. Diet 
composition also influences the aging process, with low-
protein diets [3, 4] and high phytochemical intake [5, 6] 
being associated with a longer lifespan. Notably, a recent 
analysis suggests that the heritability of human longevity is 
below 10% [7], indicating that lifestyle choices play a major 
role in influencing aging and longevity.  

Since interventions such as CR and dieting are difficult 
to implement and maintain over a long period, interest has 
focused on identifying molecules that produce effects simi-
lar to CR (i.e., the CR mimetics). This endeavor is based on 
the observation that signaling pathways that are modulat-
ed by CR, including 5’ adenosine-monophosphate-activated 
protein kinase (AMPK), mammalian target of rapamycin 
(mTOR) and sirtuin-1, can be targeted by small organic 
compounds [8]. Activation of these pathways induces au-
tophagy, mitochondrial biogenesis and expression of anti-
oxidant and detoxifying enzymes, which together can im-
prove cellular function [2, 9, 10]. In a manner similar to CR, 
several organic compounds labeled as CR mimetics pro-
mote physiological functions and reduce the development 
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of chronic diseases, thus improving both health and lon-
gevity [8]. 

The nematode Caenorhabditis elegans is a useful model 
organism for studying aging [11] (Figure 1). One of the 
main advantages of C. elegans is its short lifespan of about 
20 to 25 days, allowing the rapid screening of substances 
that affect longevity. In addition, nematodes can be ma-
nipulated easily and single-gene deletion mutants are read-
ily available, which facilitates the identification of signaling 
pathways involved in lifespan extension. Furthermore, 
many cellular pathways that control aging in C. elegans are 
conserved in more complex organisms, including fruit flies, 
mice and humans [12]. Modulation of the gut microbiota 
can also positively or negatively influence health and lon-
gevity in C. elegans [13, 14]. We review here the molecules 
and extracts derived from plants and fungi that are known 
to extend the lifespan of C. elegans, and discuss the possi-
bility of using these substances in humans. 
 

PLANT AND FUNGAL MOLECULES THAT EXTEND 
LIFESPAN IN C. ELEGANS 
A survey of the literature indicates that a large number of 
molecules and extracts from plants and fungi extend the 
lifespan of C. elegans (Table 1). Many of these natural sub-
stances are consumed in the human diet, and are found in 
vegetables, fruits, mushrooms, spices, tea, coffee and wine, 
while other extracts are derived from herbal and fungal 
remedies used in traditional Chinese medicine (e.g., 
Ganoderma lucidum, Ginkgo biloba, and Rhodiola rosea). 
Some pharmaceutical drugs were originally derived from 
plants and fungi, such as acetylsalicylic acid (aspirin), lovas-
tatin and metformin, as well as molecules that were isolat-
ed from herbal remedies, including celastrol, huperzine A 
and triptolide (Table 1). In addition, many of the plant and 
fungal extracts and molecules included here are used as 
dietary supplements (e.g., Antrodia cinnamomea, glucosa-
mine, propolis, quercetin and resveratrol). 

While many natural substances can extend the lifespan 
of nematodes, they act by regulating a small set of cellular 
pathways (Table 1 and Figure 2). One of the main cellular 
pathways that control C. elegans lifespan is the insulin 
pathway induced by food intake [12, 15]. This pathway con-
sists of DAF-2 (the homolog of the human insulin receptor), 
several conserved protein kinases, and DAF-16 (the sole 
homolog of the FOXO family of transcription factors; Figure 
2). In nematodes, insulin-like peptides bind to DAF-2 and 
induce intracellular signaling that leads to phosphorylation 
of DAF-16, thereby sequestering the transcription factor in 
the cytoplasm; in the absence of insulin-like peptides and 
DAF-2 signaling, as occurs when food is scarce, DAF-16 mi-
grates into the nucleus where it induces expression of sev-
eral genes including heat-shock proteins (HSPs) and antioxi-
dant enzymes like superoxide dismutase (SOD) and catalase 
(CAT), as well as autophagy-related proteins (Figure 2) [12, 
15].  

Another pathway activated by food intake involves the 
target of rapamycin (TOR), which is activated by nutrients 
and amino acids (Figure 2). Inhibition of TOR activates skin-
head 1 (SKN-1), the homolog of nuclear factor erythroid-2-
related factor (Nrf) proteins, and defective pharyngeal de-
velopment protein 4 (PHA-4), the homolog of human FOXA 
proteins, leading to expression of detoxifying enzymes and 
activation of autophagy, respectively [12]. TOR inhibition 
also activates autophagy by inducing basic helix-loop-helix 
protein 30 (HLH-30), the homolog of HLH transcription fac-
tor EB (TFEB) [16]. In addition, the nicotinamide adenine 
dinucleotide (NAD+)-dependent protein deacetylase Sir-2.1, 
the homolog of human sirtuin-1, induces anti-aging effects 
at least in part by stimulating DAF-16 activity (Figure 2). 

Phytochemicals were previously believed to produce 
beneficial effects on health and longevity mainly by acting 
as antioxidants that scavenge reactive oxygen species (ROS). 

FIGURE 1: Images of C. elegans nematode used as a model to study aging and longevity. (A) Light microscopy and (B) fluorescence micros-
copy images of transgenic C. elegans strain CGUIS-1 expressing the nucleolar protein fibrillarin 1 (FIB-1) coupled to green fluorescent protein 
(GFP). FIB-1 is a marker of nucleolus size that negatively correlates with longevity across taxa [161], making the CGUIS-1 strain useful for 
screening natural products that may extend lifespan. In B, GFP auto-fluorescence is induced by ultraviolet light. The images are unpublished 
observations made by the authors. 
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TABLE 1. Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan. 

Substance  Chemical 
Class 

Source Mechanism 
(or Gene Involved) 

Mean 
Lifespan 

Maximum 
Lifespan 

Ref. 

Acetylsalicylic acid (aspi-
rin) 

Organic acid Analgesic drug (de-
rived from willow 
bark) 

AAK-2/AMPK↑, 
DAF-16↑, SOD-3↑, 
ROS↓ 

+23% 
(ROS) 

 [21, 22] 

Antcin M Terpenoid Antrodia cin-
namomea 

ROS↓ +7%   [47] 

Aspalathin Chalcone 
glycoside 

Rooibos tea DAF-16↑, ROS↓ +24% (high 
glucose 
only) 

 [48] 

Baicalein Flavonoid Scutellaria bai-
calensis 

SKN-1↑ +45%  +24% [49, 50] 

Betalains Indole Opuntia fruit ROS↓ +34%   [51] 

Boeravinone B Rotenoid Boerhaavia diffusa DAF-16↑, SKN-1↑ +28%  [52] 

Brazilin Flavonoid Caesalpinia sappan DAF-16↑, HSP-
16.2↓, SOD-3↑, 
ROS↓ 

+18%   [53] 

Caffeic acid Polyphenol Plants DAF-16↑, Sir-2.1, 
OSR-1 

+15%  [54] 

Caffeic acid phenyl ester Polyphenol Propolis DAF-16↑ +9%  
(median) 

+17% [55] 

Caffeine Alkaloid Coffee DAF-16↑, CBP-1 +37%  +52% [19, 
56-58] 

Calycosin Isoflavone Astragalus mem-
branaceus 

DAF-2, DAF-16↑ +25%  [59] 

Carnosic acid Terpenoid Rosmarinus offici-
nalis 

SOD-3↑, SKN-1↑, 
HSF-1↑ 

+16%  +22% [60] 

Carnosol Terpenoid R. officinalis SOD-3↑, ROS↓ +19%  +26% [35] 

Catechin Flavonoid Green tea DAF-2 +15%   [61, 62] 

Celastrol Terpenoid Tripterygium wil-
fordii 

ND +17%  [63] 

Chlorogenic acid Polyphenol Coffee DAF-2, DAF-16↑, 
SKN-1↑ 

+20%  [34] 

Chlorophyll Chlorin Vegetables DAF-16↑ +26%   [64] 

Curcumin Polyphenol Turmeric Sir-2.1, OSR-1 +55%  
(median) 

 [65, 66] 

Damaurone D Flavonoid Damask rose DAF-2, DAF-16↑, 
SOD-3↑ 

+17% +21% [67] 

Dehydroabietic acid Terpenoid Conifer resin Sir-2.1 +16%   [68] 

Diallyl trisulfide Organosul-
fur 

Garlic SKN-1↑ +13%   [69] 

Diosgenin Terpenoid Plants DAF-16↑, SOD-3↑ +20%  [70] 

4,4’-Dimethoxychalcone Chalcone Angelica keiskei 
koidzumi 

Autophagy↑ +20%  
(median) 

 [71] 

Emodin Anthraqui-
none 

Rhubarb, buckthorn Sir-2.1, DAF-16↑ +20%   [77] 

Ellagic acid Phenol Fruits DAF-16↑ +11%   [62, 78] 

Ferulsinaic acid Organic acid Ferula plants AGEs↓, ROS↓ +18% +42% [79] 

Fisetin Flavonoid Fruits, vegetables DAF-16↑, ROS↓ +6% (heat)  [80] 

Flavonoids Flavonoid Onion ND +20%  [17] 

Fruit extract Mixture Apple ND +39%  +25%  [81] 

Fruit extract Mixture Blueberry DAF-16↑, SKN-1↑, 
SOD-3↑ 

+44%  +24% [82] 

Fruit extract Mixture Mulberry DAF-16↑, Sir-2.1 +20% +9% [83] 

Fruit extract Mixture Orange DAF-16↑, SOD-3↑, 
ROS↓ 

+26%  +26% [84] 

Fruit extract Mixture Pomegranate DAF-16↑ +56%  +36% [78] 

Fruit extract Mixture Purple pitanga DAF-16↑ ND  [85] 

Fungal extract Mixture Ganoderma lucidum GLP-1 +36% +12% [86] 
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TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan. 

Substance  Chemical 
Class 

Source Mechanism 
(or Gene Involved) 

Mean 
Lifespan 

Maximum 
Lifespan 

Ref. 

Gallic acid Phenolic 
acid 

Fruits ND +12%   [62] 

Genistein Isoflavone Soybean, coffee SOD-3↑, HSP-16.2↑ +28%   [87] 

Glucosamine Amino sug-
ar 

Dietary supplement 
(can be isolated 
from wheat or corn) 

AAK-2/AMPK↑, 
mitochondrial bio-
genesis↑, autopha-
gy↑ 

+30%   [30, 88] 

Glaucarubinone Degraded 
terpenoid 

Simaroubaceae 
plants 

Cellular respiration↑ +8% +8% [89] 

Huperzine A Alkaloid Huperzia serrata ND +13%   [90] 

10-Hydroxy-2-decenoic 
acid 

Organic acid Royal jelly ND +12%  +21% [91] 

Icariin Flavonoid 
glycoside 

Epimedium brevi-
cornum 

DAF-16↑ +21%   [92] 

Icariside II Flavonoid 
glycoside 

E. brevicornum DAF-16↑, HSP-
12.3↑ 

+31%   [92] 

Isorhamnetin Flavonoid Onion ROS↓ +16% +16% [93] 

Kaempferol Flavonoid Fruits, vegetables DAF-16↑, ROS↓ +10% 
(heat)  

+7%  [80, 94] 

Laricitrin Flavonoid Red grapes and 
wine 

DAF-16↑ +55%  [95] 

Lignans Polyphenol Arctium lappa DAF-16↑ +25%   [96] 

Lovastatin Lactone Mushrooms DAF-16↑ +25%  [97] 

Metformin Biguanide Anti-diabetic drug 
(derived from 
French lilac) 

AAK-2/AMPK↑, 
TOR↓, SKN-1↑, 
methionine↓, ag-
matine↑ 

+40% (me-
dian) 

 [37, 98-
100] 

Monascin Azaphilo-
noid 

Monascus pur-
pureus 

DAF-16↑, SOD-1↑, 
HSP-16.2↑ 

+29% 
(CL2006 
strain) 

 [101] 

Myricetin Flavonoid Fruits, vegetables DAF-16↑, ROS↓, 
Sir-2.1 

+48%  +22% [94, 95, 
102, 103] 

Myricetin-trimethylether Flavonoid Bridelia plant DAF-16↑ +54%   [95] 

Naphthazarin Naphtho-
quinone 

Plants SKN-1↑ +13% +25% [18] 

NDGA Polyphenol Larrea tridentata Autophagy↑ +21%  
(median) 

 [104] 

5’-Octanoyl salicylic acid Organic acid Skin exfoliating drug 
(aspirin derivative) 

AAK-2/AMPK↑, 
TOR↓, autophagy↑, 
UPRmit↑ 

+19%  +12% [105] 

Oleanolic acid Terpenoid Plants DAF-16↑, ROS↓ +17%   [106] 

Oxoline Naphtho-
quinone 

Plants ND +15% +10% [18] 

Piceatannol Stilbenoid Red grape, wine DAF-2, DAF-16↑, Sir-
2.1 

+18% (me-
dian) 

 [107] 

Plant extract Mixture Alpinia zerumbet SOD-3↑, HSP-16.2↑ +23%  +61% [108] 

Plant extract Mixture Anacardium occi-
dentale 

DAF-16↑, SKN-1↑, 
SOD-3↑ 

+20%   [109] 

Plant extract Mixture Betula utilis DAF-16↑, HSF-1↑, 
SKN-1↑, ROS↓ 

+36%   [110] 

Plant extract Mixture Black tea ND ND   [111] 

Plant extract Mixture Caesalpinia mimo-
soides 

DAF-16↑, ROS↓ +4%   [112] 

Plant extract Mixture Damnacanthus 
officinarum 

ND +10–30%   [113] 

Plant extract Mixture Dioscorea alata HSP-16.2↑, SKN-1↑ +28%   [114] 
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TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan. 

Substance  Chemical 
Class 

Source Mechanism 
(or Gene Involved) 

Mean 
Lifespan 

Maximum 
Lifespan 

Ref. 

Plant extract Mixture Eleutherococcus 
senticosus 

DAF-16↑ +16%  +12% [25] 

Plant extract Mixture Garlic DAF-16↑ +21%   [115] 

Plant extract Mixture Ginkgo biloba ROS↓ +8%  
(median) 

 [116, 117] 

Plant extract Mixture Glochidion zeylan-
icum 

DAF-16↑, SKN-1↑, 
SOD-3↑, HSP-16.2↓ 

+10%   [118] 

Plant extract Mixture Green tea EAT-2 ND   [111] 

Plant extract Mixture Guarana DAF-16↑ +14%  [119] 

Plant extract Mixture Hibiscus sabdariffa DAF-16↑, SKN-1↑ +24%   [120] 

Plant extract Mixture Lonicera japonica DAF-2, DAF-16↑, 
SOD-3↑, ROS↓ 

+22%   [121] 

Plant extract Mixture Pu-er tea ND ND   [111] 

Plant extract Mixture Ribes fasciculatum DAF-2, AGE-1, DAF-
16↑, Sir-2.1, SOD↑, 
ROS↓ 

+16%  +19% [122] 

Plant extract Mixture Rhodiola rosea DAF-16↑ +15%  +12% [25] 

Plant extract Mixture Rooibos tea HSP-16.2↓ +23% (high 
glucose 
only) 

 [48] 

Plant extract Mixture Turkish medicinal 
plants 

ND +24%   [123] 

Plant extract Mixture Viscum album col-
oratum 

Sir2 +10%   [26] 

Plumbagin Naphtho-
quinone 

Plumbago zeylanica DAF-16↑, SKN-1↑ +12% +13% [18] 

Polydatin Stilbenoid 
glycoside 

Grape DAF-16↑, SOD-3↑ +31%   [124] 

Polysaccharides Polysaccha-
ride 

A. membranaceus DAF-16↑ +20%  
(median) 

 [125] 

Polysaccharides Polysaccha-
ride 

Auricularia auricu-
lar 

DAF-16↑, SKN-1↑, 
Sir-2.1 

-18% +22% [126] 

Polysaccharides Polysaccha-
ride 

Chlorophytum 
borivilianum 

ND +23%  
(median) 

 [127] 

Polysaccharides Polysaccha-
ride 

Cordyceps militaris ND +17%   [128] 

Polysaccharides  
(lentinan) 

Polysaccha-
ride 

Lentinula edodes ND +11%  [128] 

Polysaccharides Polysaccha-
ride 

Panax notoginseng SOD↑, catalase↑, 
MDA↓ 

+21%   [129] 

Polysaccharides Polysaccha-
ride 

G. lucidum DAF-16↑, autopha-
gy↑ 

+44%  
(median) 

 [130], 
un-
published 
data 

Polysaccharides Polysaccha-
ride 

Rehmannia glutino-
sa 

DAF-16↑ ND  [131] 

Polyphenols Polyphenol Apple Sir-2.1 +12%   [132] 

Polyphenols Polyphenol Blueberry ROS↓, OSR-1, SEK-
1↑ 

+28% +14% [133] 

Polyphenols Polyphenol Cocoa DAF-16↑, Sir-2.1 +17% (me-
dian) 

 [134] 

Quercetin Flavonoid Vegetables AGE-1, DAF-2, DAF-
16↑, SEK-1↑ 

+15%  +18% [54, 
93,94 , 
135-138] 

Quercetin-3-O-glucoside Flavonoid 
glycoside 

Vegetables ND +23%  +7% [139] 

Quinic acid Polyol Uncaria tomentosa DAF-16↑, SOD-3↑ +7%  [140] 
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However, several lines of evidence indicate that these mol-
ecules may act in other ways, notably by inducing stress 
resistance and anti-aging pathways [5, 6]. Accordingly, the 
antioxidant properties of phytochemicals in vitro do not 
correlate with anti-aging effects in C. elegans [17]. Moreo-
ver, some phytochemicals can, instead, extend C. elegans 
lifespan by inducing ROS formation, which in turn leads to 
expression of SKN-1 and antioxidant enzymes that protect 

from oxidative stress by inactivating ROS [18]. For example, 
theophylline, a methylxanthine compound found in cocoa, 
chocolate, tea and guarana, slightly increases ROS levels in 
C. elegans, which prolongs lifespan and increases resistance 
to the ROS-producer juglone [19]. Plant molecules that in-
duce ROS formation may activate c-Jun N-terminal kinase 1 
(JNK-1) and DAF-16 (Figure 2). Other phytochemicals acti-

TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan. 

Substance  Chemical 
Class 

Source Mechanism 
(or Gene Involved) 

Mean 
Lifespan 

Maximum 
Lifespan 

Ref. 

Reserpine Alkaloid Indian snakeroot, 
anti-hypertensive 
drug 

Stress tolerance↑ +31%   [141] 

Resveratrol Stilbenoid Red wine, dietary 
supplement 

Sir-2.1, autophagy↑ +18%   [142-147] 

Rosmarinic acid Polyphenol R. officinalis DAF-16↑, OSR-1, 
SEK-1↑, Sir-2.1 

+63%  [54,148] 

Royal jelly Mixture Dietary supple-
ment 

DAF-16↑ +9%   [91] 

S-allylcysteine Organosul-
fur 

Garlic SKN-1↑ +17%  [149] 

S-allylmercaptocysteine Organosul-
fur 

Garlic SKN-1↑ +21%  [149] 

Spermidine Polyamine Natto, mushrooms Autophagy↑ +15%   [150] 

Silymarin Flavo-
nolignan 

Milk thistle DAF-16↑, SOD-3↑, 
ROS↓ 

+18%   [151] 

Simvastatin Lactone Cholesterol-
lowering drug (de-
rived from fungi) 

ND +13%  [97] 

Syringetin Flavonoid Sichuan pepper DAF-16↑ +36%   [95] 

Tamarixetin Flavonoid G. biloba ROS↓ +29% 
(median) 

 [93,116] 

Tambulin Flavonoid Zanthoxyllum ar-
amatum 

DAF-16↑, SOD-1↑, 
SOD-3↑, ROS↓ 

+17%  [152] 

Tannic acid Polyphenol Plants SEK-1↑                                                                                                       +19%   [62,153] 

Taurine Amino sul-
fonic acid 

Dietary supple-
ment 

ND +11%   [154] 

Theanine Amino acid Tea, dietary sup-
plement 

ND +14%   [154,155] 

Theophylline Alkaloid Coffee ROS↓ +21%  [19] 

Tocotrienols Tocopherol Fruits, vegetables ROS↓ +20%   [156] 

Tomatidine Alkaloid Unripe tomatoe SKN-1↑ +7%  [157] 

Trehalose Disaccha-
ride 

Vegetables, mush-
rooms 

DAF-2 +30%   [158] 

Triptolide Terpenoid T. wilfordii SOD-3↑, HSP-
16.2↑, ROS↓ 

+20%  +16% [159] 

Ursolic acid Terpenoid Plants SKN-1↑ +31%  [160] 

The “Mechanism” column displays modulation of specific cellular components (e.g., DAF-16↑, SOD-1↑, ROS↓) or involvement of particu-
lar genes, proteins and enzymes (e.g., DAF-2, OSR-1, Sir-2.1). In the “Lifespan” column, the parentheses indicate that lifespan assays were 
performed in the presence of cellular stress such as high glucose, heat or paraquat; in some studies, extension of “median” lifespan was 
reported. Only the highest increase in mean, median or maximum lifespan is shown. Abbreviations: AAK-2, 5’ adenosine-monophosphate-
activated protein kinase catalytic subunit alpha 2; AGE-1, phosphatidylinositol 3-kinase age 1; AGEs, advanced glycation endproducts; 
AMPK, 5’-adenosine-monophosphate-activated protein kinase; CBP-1, calcineurin-binding protein-1; DAF, abnormal dauer formation pro-
tein; EGCG, epigallocatechin gallate; FOX, forkhead box; GLP-1, abnormal germ line proliferation; HSF-1, heat shock factor 1; HSP, heat-
shock protein; MDA, malondialdehyde; ND, not determined; NDGA, nordihydroguaiaretic acid; OSR-1, odd-skipped-related protein-1; ROS, 
reactive oxygen species; Sir, sirtuin; SKN-1, skinhead protein 1; SOD, superoxide dismutase; TOR, target of rapamycin; UPRmit, mitochon-
drial unfolded protein response. 
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vate SKN-1 and lead to reduction of ROS in a similar manner 
(Table 1).  

While several plant-derived compounds extend lifespan 
in nematodes, conflicting results have been obtained in 
some cases, possibly due to differences in study design or 
experimental conditions. For instance, the Caenorhabditis 
Intervention Testing Program, which aims to identify anti-
aging compounds that prolong lifespan in genetically di-
verse cohorts of C. elegans, reported that aspirin does not 
extend lifespan [20], contradicting the results of previous 
studies [21, 22]. 

 

LIFESPAN EXTENSION OCCURS VIA HORMESIS 
It has been proposed that many molecules derived from 
plants and fungi induce stress resistance and defense 
mechanisms via hormesis, i.e., which posits that cellular 
stress that is detrimental at high intensity can produce 

health benefits at low intensity [5, 6, 23]. By activating au-
tophagy, mitochondrial biogenesis and expression of anti-
oxidant and detoxifying enzymes, plant and fungal products 
reduce cellular damage and improve cellular functions, thus 
reducing aging and extending longevity [6]. This mechanism 
is consistent with the concept that, under conditions of 
stress such as CR, the organism allocates more energy for 
resistance and survival, instead of growth and reproduction 
[24]. 

The hormetic dose-dependence is observed in several 
studies listed in Table 1. For example, treatment of C. ele-
gans with an extract of Siberian ginseng (Eleutherococcus 
senticosus) extends mean lifespan by 5% at low dose  
(100 μg/ml) and by 16% at intermediate dose (250 μg/ml), 
whereas the same extract reduces mean lifespan by 23% at 
high dose (2,500 μg/ml) [25]. Similar hormetic dose-
responses involving lifespan extension at low doses and 

FIGURE 2: Aging-related pathways modulated by plant and fungal molecules in C. elegans. Plant and fungal molecules extend nematode 
lifespan by inducing the formation of ROS, by activating AAK-2/AMPK, or by inhibiting the insulin or TOR pathway. General cellular pathways are 
shown here, but variations may occur between cells of different tissues. Human protein homologs are given in green. Abbreviations: AGE-1, 
phosphatidylinositol 3-kinase age 1; AMP, adenosine monophosphate; ATP, adenosine triphosphate; AAK-2, 5’ adenosine-monophosphate-
activated protein kinase catalytic subunit alpha 2; AMPK, 5’ adenosine-monophosphate-activated protein kinase; CAT, catalase; DAF, abnormal 
dauer formation protein; FOX, forkhead box; HLH-30, basic helix-loop-helix protein 30; HSF-1, heat-shock factor 1; HSPs, heat-shock proteins; 
IGF-1, insulin-like growth factor 1; IGF-1R, insulin-like growth factor 1 receptor; IR, insulin receptor; JNK, c-Jun N-terminal kinase; mTOR, mam-
malian target of rapamycin; Nrf, nuclear factor erythroid 2-related factor; PDK-1, 3’ phosphoinositide-dependent protein kinase 1; PHA-4, defec-
tive pharyngeal development protein 4; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; SGK-1, serum and glucocorticoid-
regulated kinase-1; Sir-2.1, sirtuin 2.1; SIRT-1, sirtuin 1; SKN-1, skinhead 1; SOD, superoxide dismutase; TFEB, HLH transcription factor EB; TOR, 
target of rapamycin. 
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lifespan shortening at high doses were obtained for plant 
extracts of Rhodiola rosea [25] and mistletoe [26], and for 
the tea polyphenol epigallocatechin gallate (EGCG) [27], to 
name a few. However, this dose dependence has been 
largely overlooked in many studies, while in other cases, a 
relatively narrow range of concentrations tested may have 
prevented the observation of hormetic dose-responses.  

Another observation suggesting that plant and fungal 
compounds extend lifespan via hormesis is the fact that 
stress resistance pathways are activated in the treated 
worms. Thus, many plant and fungal compounds that in-
clude 4,4’-dimethoxychalcone, glucosamine, nordihy-
droguaiaretic acid (NDGA), resveratrol and spermidine ex-
tend the lifespan of C. elegans by activating autophagy (Ta-
ble 1 and Figure 2), which in itself is a typical cellular re-
sponse to stress [6, 28]. We also observed that polysaccha-
rides isolated from the medicinal fungus G. lucidum extend 
the lifespan of C. elegans by inducing autophagy (un-
published data). In addition, several plant and fungal prod-
ucts increase the levels of HSPs and antioxidant and detoxi-
fying enzymes (Table 1), reflecting a cellular response that 
aims to maintain homeostasis in response to stress. 

Plant and fungal compounds can also induce mitochon-
drial biogenesis via a process referred to as “mitohormesis” 
[29]. High levels of ROS usually induce cellular damage, but 
as mentioned above some phytochemicals can induce the 
formation of low levels of ROS which in turn induce stress 
resistance mechanisms. In this case, cells respond by form-
ing new mitochondria which in turn may improve cellular 
function and longevity. Examples of natural compounds 
that act this way in nematodes include EGCG [27] and glu-
cosamine [30] (Table 1). Of note, excess intake of antioxi-
dants such as vitamins C and E may reduce the health bene-
fits of anti-aging interventions like exercise in humans by 
preventing mitohormesis [29]. 

In the studies consulted, plant and fungal extracts and 
molecules extend mean or median lifespan of nematodes 
by an average of 4 to 63% (Table 1). These lifespan exten-
sions are consistent with the hormetic effects observed in 
a large number of studies reporting the responses of mi-
crobes, plants and animals to various forms of biological 
stress, in which maximum effects of 20–90% above control 
were reported [31]. While hormetic responses may be rela-
tively modest in magnitude, they are nevertheless highly 
significant in view of their overall impact on health and 
longevity. 

Of note, only some plant or fungal substances increase 
maximum lifespan, producing increases ranging from 7 to 
68% (Table 1). While a description of the effects on maxi-
mum lifespan may have been omitted in some studies, this 
observation nonetheless suggests that the treatments may 
reduce the number of deaths in adult worms at some point 
in time but fail to extend the lifespan of old worms. Given 
that hormetic effects have been attributed to an overcom-
pensation of homeostasis-regulating mechanisms and may 
thus rely on the capacity to maintain homeostasis [32], the 
absence of effects on maximum lifespan in some studies 
may indicate that very old individuals are unable to main-
tain homeostasis in response to biological stress, possibly 

due to a loss of resilience. Consistent with this possibility, 
feeding C. elegans with metformin late in life produces 
toxic effects and reduces lifespan by exacerbating age-
related mitochondrial dysfunction [33], unlike the lifespan-
enhancing effects of metformin seen in younger worms. 
Similarly, the lifespan-extension effects of EGCG decline 
with age [27]. This indicates that CR mimetics—and possi-
bly other anti-aging interventions that work through 
hormesis—may be ineffective and even detrimental in very 
old individuals. 
 

EFFECTS OF NATURAL PRODUCTS ON HEALTHSPAN VIA 
THE GUT MICROBIOTA 
While studies in C. elegans have focused on extension of 
lifespan, many reports showed that natural substances that 
extend lifespan also produce beneficial effects on health-
span. For instance, plant-derived polyphenols such as 
chlorogenic acid, which is found in vegetables and coffee, 
improve insulin sensitivity and mobility in the treated 
worms [34]. Similarly, carnosic acid, a diterpene compound 
isolated from rosemary (Rosmarinus officinalis), improves 
mobility and aging-related pigmentation and neurodegen-
eration in nematodes [35]. These observations are con-
sistent with the view that interventions that prolong 
lifespan may also improve physiological functions and re-
duce development of chronic disease. 

Recent studies suggest that some of the beneficial ef-
fects on health and longevity in nematodes may take place 
via modulation of the gut microbiota. A key study showed 
that Escherichia coli mutants deficient in some biochemical 
components can extend nematode lifespan [36]. This study 
reported that production of the polysaccharide colanic acid 
by gut bacteria can extend lifespan and reduce age-related 
pathologies by inducing the unfolded protein response in 
the host. Similarly, metformin can extend lifespan and reg-
ulate host lipid metabolism via production of the metabo-
lite agmatine by the gut microbiota [37]. Other studies 
showed that a strain of the probiotic Lactobacillus rhamno-
sus [38] or Weissella bacteria activated the DAF-16 path-
way and extended C. elegans lifespan compared to feeding 
with E. coli [39]. However, these results may also be par-
tially explained by the observation that E. coli becomes 
pathogenic for old worms and feeding with less pathogenic 
bacteria may therefore extend nematode lifespan [40]. 
Given that major differences exist between gut microbiota 
composition in C. elegans and humans—including the fact 
that the gut microbiota in nematodes studied in vitro usu-
ally consists of a single bacterial species provided as food—
further studies are needed to assess the relevance of these 
observations in humans. 

 

CHALLENGES AND OPPORTUNITIES 
Our overview indicates that many plant and fruit extracts 
derived from blueberries to garlic, as well as plant mole-
cules such as chlorophyll and caffeine, extend the lifespan 
of C. elegans (Table 1). Yet, many factors may partially limit 
the relevance of these findings for humans, including major 
differences in physiology and metabolism. Health and lon-
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gevity in humans depend on complex interactions between 
genetic background, lifestyle and diet, which can hardly be 
reproduced in experimental settings. It is likely that com-
mon lifestyle habits such as overeating, smoking, seden-
tarity, alcohol intake, stress and poor sleep, as well as envi-
ronmental factors such as pollution, ultraviolet light and 
toxins, may reduce, suppress or even reverse the beneficial 
effects of phytochemicals and CR mimetics on health and 
longevity. Moreover, the appropriate concentrations and 
treatment schedule required to produce optimal health 
benefits remains largely unknown. The observations re-
ported here also suggest that CR mimetics may become 
ineffective and even detrimental at very old age, therefore 
requiring the identification of optimal doses for older indi-
viduals and the development of new ways to monitor ho-
meostasis and resilience. 

Nonetheless, several epidemiological studies suggest 
that some of the plant-derived molecules described here 
may reduce human mortality and chronic diseases in hu-
mans. For instance, individuals who regularly consume 
coffee—arguably the highest source of polyphenols and 
caffeine in the human diet—live longer and show a re-
duced incidence of cancer, cardiovascular disease and Alz-
heimer’s disease compared with non-consumers [41, 42]. 
Similarly, people who regularly take metformin [43] or 
glucosamine [44, 45], as well as those who have a higher 
dietary intake of spermidine [46], live longer than non-
users or controls. Finally, many CR mimetics derived from 
natural sources and studied in C. elegans, including querce-
tin, resveratrol and spermidine, have shown promising 
results in clinical trials [8]. It thus becomes a matter of 

when and how—as opposed to if—these plant and fungal 
molecules can be used in humans. 
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